Logic Programming and Logarithmic Space

نویسندگان

  • Clément Aubert
  • Marc Bagnol
  • Paolo Pistone
  • Thomas Seiller
چکیده

We present an algebraic view on logic programming, related to proof theory and more specifically linear logic and geometry of interaction. Within this construction, a characterization of logspace (deterministic and non-deterministic) computation is given via a syntactic restriction, using an encoding of words that derives from proof theory. We show that the acceptance of a word by an observation (the counterpart of a program in the encoding) can be decided within logarithmic space, by reducing this problem to the acyclicity of a graph. We show moreover that observations are as expressive as two-ways multi-head finite automata, a kind of pointer machine that is a standard model of logarithmic space computation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast and Self-Repairing Genetic Programming Designer for Logic Circuits

Usually, important parameters in the design and implementation of combinational logic circuits are the number of gates, transistors, and the levels used in the design of the circuit. In this regard, various evolutionary paradigms with different competency have recently been introduced. However, while being advantageous, evolutionary paradigms also have some limitations including: a) lack of con...

متن کامل

A goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems

A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...

متن کامل

Unification and Logarithmic Space

We present an algebraic characterization of the complexity classes Logspace and NLogspace, using an algebra with a composition law based on unification. This new bridge between unification and complexity classes is inspired from proof theory and more specifically linear logic and Geometry of Interaction. We show how unification can be used to build a model of computation by means of specific su...

متن کامل

Capturing Logarithmic Space and Polynomial Time on Chordal Claw-Free Graphs

We show that the class of chordal claw-free graphs admits LREC=-definable canonization. LREC= is a logic that extends first-order logic with counting by an operator that allows it to formalize a limited form of recursion. This operator can be evaluated in logarithmic space. It follows that there exists a logarithmic-space canonization algorithm, and therefore a logarithmic-space isomorphism tes...

متن کامل

Computation by interaction for space-bounded functional programming

We consider the problem of supporting sublinear space programming in a functional programming language. Writing programs with sublinear space usage often requires one to use special implementation techniques for otherwise easy tasks, e.g. one cannot compose functions directly for lack of space for the intermediate result, but must instead compute and recompute small parts of the intermediate re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014